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T
he human body hosts trillions of 

microbiotas, including bacteria, vi-

ruses, fungi, and archaea; this num-

ber is close to that of human body 

cells (Knight & Buhler, 2015; Sender, 

Fuchs, & Milo, 2016). The human microbiotas and 

their genomes are collectively called the human mi-

crobiome (Ursell, Metcalf, Parfrey, & Knight, 2012), 

which varies among different hosts and across body 

sites within a single host (Morgan & Huttenhower, 

2012; Spor, Koren, & Ley, 2011). Within the human mi-

crobiome, a number of potential biomarkers of cancer 

diagnosis, treatment, and prognosis have been identi-

fied (Rajagopala et al., 2017; Zitvogel, Ayyoub, Routy, 

& Kroemer, 2016), particularly regarding the roles of 

the human microbiome in treatment response and ef-

ficacy (Wilson & Nicholson, 2017), treatment-related 

toxicities, such as infections and pain (Kelly, Lyon, 

Yoon, & Horgas, 2016; Touchefeu et al., 2014), and 

disparities in treatment outcomes (Abbasi, 2017). 

Nurses involved in clinical research and practice 

are greatly encouraged to have a general understand-

ing of what the human microbiome is, how to measure 

the human microbiome, what microbiome findings 

are feasible, and what the applications of microbiome 

study findings are to clinical care (Claesson, Clooney, 

& O’Toole, 2017; Goodrich et al., 2014) because 

findings from current research may affect and be inte-

grated with clinical care processes in the future. As 

microbiome science moves forward, nurse research-

ers and practitioners should have a general knowledge 

of computational analysis of microbiome data and 

ideally understand the process of human microbiome 

analysis. In the near future, clinicians may include 

assessment of a patient’s microbiome data in routine 

clinical practice. Several methods have been used to 
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assess the human microbiome, such as the 16S rRNA 

gene, which includes nine variable regions (V1–V9) 

that provide a taxonomy profile of the microbiome 

(Ames, Ranucci, Moriyama, & Wallen, 2017). This 

study demonstrated methods for human microbiome 

analysis using 16S rRNA gene sequencing and QIIME 

2™ (Quantitative Insights Into Microbial Ecology 2) 

bioinformatics pipeline and reported pilot results of 

the vaginal microbiome in women with gynecologic 

cancer before and after radiation therapy (RT).

Several packages for microbiome analysis are 

available, such as QIIME 2 (Navas-Molina et al., 2013), 

Mothur (Schloss et al., 2009), and RDP tools (Olsen et 

al., 1992). In this study, QIIME 2 is used as an exem-

plar tool for the vaginal microbiome analysis. QIIME 2  

is a flexible microbiome analysis package to analyze 

16S rRNA gene sequencing. Using the 16S rRNA gene 

sequence allows the comparison of the human micro-

biome communities to describe normal variations to 

pathologic disturbances (Caporaso et al., 2010). 

Three aspects of the microbiome analysis that are 

important to examine consist of diversity (how many 

species are there [alpha diversity], and how simi-

lar are pairs of samples [beta diversity]?), taxonomy 

(who is there?), and abundance (how common or 

rare is a species relative to other species in a commu-

nity?) (Claesson et al., 2017; Morgan & Huttenhower, 

2012). QIIME 2 provides this information via differ-

ent plugins. A plugin is an interface made available to 

QIIME 2 to support different functions of microbiome 

analysis. The original QIIME uses the operational 

taxonomic units (OTUs) being defined as clusters of 

reads that commonly differ by less than 3% (Hamady & 

Knight, 2009). QIIME 2 uses newly developed quality 

control methods (e.g., DADA2) to examine amplicon 

sequence variants (ASVs) to the single-nucleotide dif-

ferences over gene sequencing regions (Callahan et 

al., 2016; Callahan, McMurdie, & Holmes, 2017). With 

the advancement of next-generation sequencing, 

new bioinformatics technologies, national initiatives 

of the Human Microbiome Project (HPM) and the 

American Gut Project (Human Microbiome Project 

Consortium, 2012; McDonald et al., 2018), studying 

the composition and functions of human microbi-

ome and its translational applications is becoming 

an important component in clinical care and clinical 

research (McElroy, Chung, & Regan, 2017). 

The healthy vaginal microbiome plays an 

important role in regulating microenvironmental 

disturbances and protecting against infections of the 

urogenital tract. A healthy woman’s vagina is primar-

ily dominated by genus Lactobacillus (Blum, 2017). 

Lactobacillus species (spp.) help acidify the vagina to a 

pH of less than 4 by producing lactic acid, which is 

thought to provide protection against some sexually 

transmitted infections, including bacterial vaginosis 

(BV), human papillomavirus infection, and HIV/AIDS. 

A lower diversity is better for the vaginal microbiome; 

a dysbiotic vaginal microbiome is defined by increased 

vaginal microbiome diversity and the overgrowth of 

pathogenic microbial communities (Champer et al., 

2018; Muls et al., 2017). A higher diversity of vaginal 

microbiome may interrupt the acidic vaginal envi-

ronment. This is opposite from the gut microbiome, 

in which a higher diversity is better to maintain the 

gut microenvironmental hemostasis. Therefore, a low 

abundance of Lactobacillus spp. accompanied by poly-

microbial anaerobic overgrowth, such as Gardnerella 

vaginalis, Prevotella spp.,  and Bacteroides  spp., is asso-

ciated with BV (Champer et al., 2018; Green, Zarek, & 

Catherino, 2015).

Cancer treatments, such as RT, in women with 

gynecologic cancer may result in a dysbiotic vag-

inal microbiome. Understanding the roles of the 

vaginal microbiome in cancer diagnosis, treatment, 

and outcomes is emerging and still in its nascent 

stage. Based on Bronfenbrenner’s ecological system 

theory (Bronfenbrenner, 1979), a multiple-factors 

framework has been proposed to study the human 

microbiome in cancer, including environmental 

factors (e.g., geographic locations, antibiotics expo-

sure), family genetic factors, individual factors (e.g., 

race, lifestyles), and disease- and treatment-related 

factors (e.g., RT, cancer diagnosis) (Bai, Behera, & 

Bruner, 2017). This framework suggests that demo-

graphic factors (e.g., age, race) and treatment-related 

factors (e.g., RT) collectively contribute to a dysbi-

otic microbiome in cancer. A dysbiosis in the vaginal 

microbiome is associated with clinical outcomes in 

cancer, such as pain, sexual dysfunction, and urinary 

symptoms (Chase, Goulder, Zenhausern, Monk, & 

Herbst-Kralovetz, 2015). Until the results of the cur-

rent study, characteristics of the vaginal microbiome 

pre- and post-RT were unknown in women with gyne-

cologic cancer. 

A healthy vaginal microbiome could promote 

health and decrease diseases. For women with 

gynecologic cancer, cancer treatments, such as che-

motherapy and RT, may cause dysbiosis in the vaginal 

microbiome. Current understanding of this dysbiosis 

in women with gynecologic cancer is very limited. The 

advancement of next-generation sequencing (e.g., 16S 

rRNA) and bioinformatics tools (e.g., QIIME 2) pro-

vides means to study the diversity and compositions 
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of the vaginal microbiome and its role in women’s 

experiences during cancer treatment. The purposes 

of this pilot study were to demonstrate the use of the 

QIIME 2 pipeline and provide a description of this 

technique with key concepts in the analysis process 

(see Figure 1). In addition, this study characterized 

FIGURE 1. Key Concepts and Definitions in Human Microbiome Analysis

16S rRNA gene
 ɐ A gene located in the 30S subunit of a prokaryotic ribosome, which 

contains 9 variable regions (V1–V9) that can be targeted for amplifi-

cation and used for microbial taxonomic profiling of a sample

Alpha Diversity

 ɐ Diversity within an individual sample

Amplicon 

 ɐ A target gene or sequence that is amplified naturally or artificially

Analysis of Composition of Microbiomes

 ɐ A statistical framework for comparing the taxa abundance in 2 or 

more populations

Beta Diversity

 ɐ Diversity between separate samples

Bioinformatics

 ɐ The use of computer science, statistics, and mathematics to analyze 

and interpret biologic processes and molecular components

Chimeric Sequences 

 ɐ Artifacts from the polymerase chain reaction process in which an 

amplified sequence is composed of DNA from 2 or more parents

Classifier

 ɐ Marker gene reference databases for taxonomy classification, such 

as Greengenes

DADA2

 ɐ A model-based approach for correcting amplicon errors without 

constructing operational taxonomic units

Demultiplexed Paired-End Sequencing Reads

 ɐ Demultiplexing means dividing sequencing reads into separate files 

for each barcoded sample, and paired-end sequencing involves 

sequencing both ends of the DNA fragments in a library and aligning 

the forward and reverse reads as read pairs.

Feature

 ɐ A unit of observation, such as an operational taxonomic unit, a 

sequence variant, a gene, or a metabolite

Feature Table

 ɐ A matrix of sample by feature abundances (the frequencies of each 

feature was observed in each sample)

Illumina MiSeq Platform

 ɐ Platform for gene amplicon sequencing in microbial ecology studies; 

MiSeq amplicon sequencing of target genes is rapidly becoming a 

leading method for profiling microbial communities.

Microbiome

 ɐ The collection of microbiotas and their microbial genomes at a given 

site, such as the vagina or gastrointestinal tract

Microbiota

 ɐ The microbial taxa associated with humans; the human body is col-

onized by a vast number of microbes, collectively called the human 

microbiota.

Operational Taxonomic Unit

 ɐ A cluster of sequences that are often at least 97% similar to each 

other and used to classify closely related sequences

Permutation Multivariate Analysis of Variance

 ɐ Statistical method used to test whether distances between samples 

are more like each other than to other samples

Phred Quality Score

 ɐ A measure of the quality of base calling in a sequenced strand of 

DNA

Phylogenetics

 ɐ Evolutionary relationships between organisms, genes, or proteins

Pipelines 

 ɐ A series of tools or scripts optimized for the analysis of a dataset in 

which the outputs of one step are the inputs for next step

Plugin

 ɐ Microbiome analysis functionality that is accessible to users through 

a variety of interfaces built within the QIIME 2™ framework

Primer

 ɐ A short strand of RNA or DNA that serves as a starting point for DNA 

synthesis

QIIME 2™ (Quantitative Insights Into Microbial Ecology 2)

 ɐ A next-generation microbiome bioinformatics pipeline that is extensi-

ble, free, open source, and community-developed

Sequence Variants

 ɐ Biologic sequences in the sample prior to the introduction of amplifi-

cation and sequencing errors, and distinguishing sequence variants 

can be conducted by as little as 1 nucleotide.

Taxon

 ɐ A population of phylogenetically related organisms; in biologic  

classification, taxonomic rank is the relative level of a group of  

organisms (a taxon) in a taxonomic hierarchy. The major taxonomic 

ranks are kingdom, phylum, class, order, family, genus, and  

species.
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the vaginal microbiome in a cohort of women with 

gynecologic cancer and explored the effect of demo-

graphic (e.g., age, race) and clinical (e.g., RT) variables 

on vaginal microbiome communities.

Methods

This pilot study used a descriptive design to test 

methods for human microbiome analysis using 16S 

rRNA gene sequencing and microbiome identifica-

tion via the QIIME 2 pipeline and to describe profiles 

of vaginal microbiome in a cohort of women with 

gynecologic cancer. This study was approved by the 

institutional review boards at Emory University and 

Grady Hospital in Atlanta, Georgia.

Sample and Setting

Eligibility criteria for women were being aged 18 years 

or older, being diagnosed with gynecologic cancer 

(i.e., endometrial, cervical, or vulvar cancer), being 

treated with RT with or without surgery and/or che-

motherapy, and being able to speak English. Exclusion 

criteria included history of metastatic or other pri-

mary cancers other than gynecologic cancer and 

comorbidities that may cause severe vaginal toxicities 

(e.g., HIV/AIDS, autoimmune diseases, current sexual 

transmitted diseases, fungal infection). Use of antibi-

otics, oral or vaginal hormone replacement therapy, 

or corticosteroids within four weeks or spermicidal 

products within 48 hours of baseline assessment 

required rescheduling or exclusion. For medical pilot 

studies, a sample size of 10–30 is recommended for 

adequate ability to test hypotheses (Johanson & 

Brooks, 2010; Julious, 2005; van Belle, 2002). A conve-

nience sample of 19 women with gynecologic cancer 

were enrolled in this study. All participants were 

recruited from Winship Cancer Institute, a compre-

hensive cancer center in Atlanta, Georgia.

Data Collection and Variables 

Data collection occurred during patients’ clini-

cal visits at the radiation oncology department. 

Trained research staff identified eligible patients 

from electronic health records and notified radiation 

oncologists one week before the potential patient’s 

clinic visit for RT consultation. The radiation oncol-

ogists introduced the study to eligible patients, 

including explaining the purpose of the study and its 

risks, and offered patients the opportunity to con-

sider participation. Women interested in this study 

signed consent forms at their RT consultation. After 

the participants signed study consent forms, the clin-

ical collaborators performed a pelvic examination 

and collected two vaginal swabs at the mid-portion of 

the patient’s vagina. Once collected, the swabs were 

immediately transferred to the attending research 

staff member who swirled and sealed the swabs in 

sterile Mo Bio PowerBead Tubes. The methods of vag-

inal microbiome data collection followed the Human 

Microbiome Project protocol (Human Microbiome 

Project Consortium, 2012). All vaginal microbiome 

samples were stored at –80°C at Emory University 

School of Nursing Biobehavioral Laboratory until 

DNA extraction.

The vaginal microbiome samples pre-RT were col-

lected after diagnosis of malignancy and at least four 

weeks after surgery and pre-RT (T0). Follow-up sam-

ples were collected 1–2 months (T1), 2–4 months (T2), 

4–6 months (T3), and 10–14 months (T4) post-RT. 

Patient demographic and clinical information were 

collected at T0.

DNA Extraction

The 16S rRNA gene sequencing is a primary method 

to identify the human microbiome in research and 

clinical settings (Ames et al., 2017). Raw DNA data 

extraction procedures followed the 16S gene prepa-

ration and sequencing protocol (Caporaso et al., 

2011). DNA was extracted from vaginal swab sam-

ples stored in Mo Bio PowerBead Tubes using the Mo 

Bio PowerSoil® Isolation Kit to perform polymerase 

chain reaction amplification of 16S rRNA V3–V4 gene 

regions. For quality assurance, critical to human 

microbiome analysis, two biologic replicates from 

the first seven patients were generated at the Emory 

Integrated Genomics Core. Fifty-two 16S rRNA V3–V4 

gene sequencing samples were sequenced. Because 

each V3–V4 gene sequencing sample has two sets of 

gene sequencing reads (one forward and one back-

ward), the sequences were demultiplexed paired-end 

data (Renaud, Stenzel, Maricic, Wiebe, & Kelso, 2015) 

and resulted in a total of 104 sequencing reads for 

analysis.

QIIME 2 Pipeline

The QIIME 2 pipeline generates the bacterial com-

munities’ information for each sample. The process 

includes two stages, referred to as the upstream and 

downstream phases (see Figure 2). The upstream 

stage consists of importing 16S rRNA sequences, 

ensuring sequences quality control, constructing the 

feature table, and generating the phylogenetic tree. In 

the feature table, each value indicates the frequency 

of a feature for the corresponding sample. The down-

stream stage consists of taxonomic, diversity, and 
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abundance analysis (Caporaso et al., 2010). In this 

phase, statistics and interactive visualizations of the 

data are used (Navas-Molina et al., 2013). 

Upstream stage processing: The upstream stage 

started with importing 16S rRNA gene sequences. 

The V3–V4 gene sequences were checked for appro-

priate names and data format following QIIME 2 

requirements. To do this, 16S rRNA gene sequences 

and a metadata file with key clinical variables were 

imported into QIIME 2. The metadata file provided 

the descriptive data (e.g., race, RT) associated with 

gene sequences. The 16S rRNA reads were imported 

into QIIME 2 for analysis.

The next step was sequence quality control. QIIME 

2 provides several quality control methods, includ-

ing DADA2 (Callahan et al., 2016), Deblur (Amir et 

al., 2017), and Phred quality score–based filtering to 

remove or correct sequencing reads with errors or chi-

meras. A higher Phred quality score indicates better 

nucleotide quality for gene sequences (Blankenberg et 

al., 2010). The Phred quality score ranges from 0–42. A 

quality score higher than 20 means less than 1% prob-

ability error. In the current study, DADA2 was chosen 

to correct amplicon sequence errors and filter the 

chimeric sequences. The chimeric sequences reflect 

sequencing artifacts rather than real biologic diversity.

The third step, building the phylogenetic tree, 

shows the relationships of different bacterial spe-

cies to each other in a tree-like fashion that includes 

nodes, implying a common descendant, and branches, 

implying a split from the descendant. Bacterial spe-

cies that are more similar will be closer in proximity 

to each other on the tree. The phylogenetic tree is 

essential for microbial diversity analysis. 

Downstream stage processing: The first step in the 

downstream stage is taxonomic analysis. This analysis 

matches the DNA sequence to a microbial taxon from 

phylum to species levels. QIIME 2 comes bundled with 

Greengenes reference database. The authors imple-

mented a trained classifier tailored to the gene region 

using V3–V4 Greengenes reference database and classi-

fied the taxa of the representative sequences (Werner 

et al., 2012). Trained classifier is a trained marker gene 

reference database that is used for taxa classification.

Next, diversity analysis was performed. Diversity 

analysis can assess within-sample diversity (alpha 

diversity) and between-sample diversity (beta 

diversity). QIIME 2 can create several alpha diver-

sity metrics: observed OTUs (bacterial community 

richness), Shannon’s index (bacterial community 

richness and evenness), Faith’s phylogenetic diversity 

(PD) (bacterial community richness that incorporates 

phylogenetic relationships between taxa), and 

Pielou’s species evenness (bacterial community even-

ness) (Lozupone & Knight, 2005). Richness means the 

number of species present in a sample and evenness 

represents the relative abundance of different species 

that make up the richness. Beta diversity operates on 

a pair of samples (Caporaso et al., 2012; Lozupone 

& Knight, 2005). Common beta diversity metrics 

include Bray–Curtis distance (abundance without 

phylogeny), Jaccard distance (presence and absence 

of OTUs without phylogeny), unweighted UniFrac 

distance (presence and absence of OTUs with phylog-

eny), and weighted UniFrac distance (abundance of 

OTUs with phylogeny).

FIGURE 2. QIIME 2™ Pipeline

ANCOM—analysis of composition of microbiome; OTU—op-
erational taxonomic unit; PCoA—principal coordinates anal-
ysis; QIIME 2—Quantitative Insights Into Microbial Ecology 2
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The final process of the downstream stage is 

abundance analysis. The abundance analysis discrim-

inates differentially abundant taxa based on variables 

of interest, such as race and RT. QIIME 2 provides 

multiple mechanisms (e.g., analysis of composition 

of microbiome [ANCOM]) (Mandal et al., 2015) for 

this analysis. According to ANCOM requirements, 

the authors filtered out the taxa that only appear in 

one sample and taxa counts less than 10 across all 

samples.

Data Analysis

Bacterial taxonomies were assigned using the pre-

trained 16S rRNA V3–V4 classifier based on the 

Greengenes reference database. Alpha and beta diver-

sity metrics were used to describe the composition 

of the vaginal microbiome. Comparisons of alpha 

diversity were conducted using Kruskal–Wallis test 

for categorical data (race and RT) and Spearman’s 

rank correlation coefficient for continuous data (age 

and total RT dose). Permutational multivariate anal-

ysis of variance (PERMANOVA) (Tang, Chen, & 

Alekseyenko, 2016) was used to test the associations 

between microbial beta diversity and demographic and 

clinical variables (race and RT). Principal coordinates 

analysis (PCoA) was used to visualize sample dissimi-

larities (Caporaso et al., 2010; Vázquez-Baeza, Pirrung, 

Gonzalez, & Knight, 2013) based on the Bray–Curtis 

and unweighted UniFrac distance metrics. ANCOM 

was used to examine differentially abundant taxa in 

terms of race and RT. All data analyses were completed 

using QIIME 2. The full dataset and analyzing results 

can be found on GitHub (https://bit.ly/2MtqCr0).

Results

Participant Characteristics

Fifty-two vaginal swab samples from 19 women with 

gynecologic cancer were analyzed. These vaginal 

microbiome samples were collected at T0 (n = 17) or 

T1–T4 (n = 35). The median age was 62 years (range = 

36–71 years). Participants were African American (n =  

14), Caucasian (n = 3), Latina (n = 1), and Asian (n = 

1). The women had been diagnosed with endometrial 

(n = 10), cervical (n = 8), or vulvar cancer (n = 1). Five 

women received external beam RT, seven women 

received high-dose rate brachytherapy, and seven 

patients received a combination of both treatments. 

Mean total dose of RT was 54.21 Gy.

Upstream Stage Processing

Among 52 vaginal swab samples, the sequence count 

per sample ranged from 85,872 to 892,422, with a 

mean sequence count of 412,014 per sample. Based 

on the Phred quality score greater than 20, the raw 

sequences were trimmed at 17 and 21 base pairs (for 

the length of primers) and truncated at 250 and 250 

base pairs (for poor quality scores) for forward and 

reverse 16S rRNA V3–V4 sequencing reads, respec-

tively. After the DADA2 process, 19,365 features were 

reported. Frequencies per feature ranged from 1 to 

735,173; feature frequencies per sample ranged from 

5,225 to 192,353.

Downstream Stage Processing

Taxonomic analysis: QIIME 2 visualizes taxonomic 

findings using the taxa-bar-plot, whose stacked bar 

graph output joins sample metadata to summarize the 

relative frequency (%) of taxa present specifically at 

each taxon level, such as phylum and genus. Figure 3 

describes the microbial taxonomy at the phylum level. 

In this study, only 18 of 52 samples had greater than 

10% dominance of Lactobacillus. 

Diversity analysis: Based on Spearman’s rank cor-

relation coefficient, age and total dose of RT were not 

associated with any of the alpha diversity metrics; RT 

(pre and post) and race (Caucasian, African American, 

Asian, and Latina) were associated with alpha diver-

sity metrics. Compared to those pre-RT, women with 

gynecologic cancer post-RT showed a higher alpha 

diversity in Shannon’s index (p = 0.01), observed 

OTUs (p = 0.001), Faith’s PD (p = 0.001), and Pielou’s 

species evenness (p = 0.04). Race was significantly 

associated with alpha diversity metrics (Shannon’s 

index: p = 0.02; observed OTUs: p = 0.02; Faith’s PD: p =  

0.02;  Pielou’s species evenness: p = 0.03) based on 

the Kruskal–Wallis test. Caucasian women with gyne-

cologic cancer showed higher trends in alpha diversity 

than African American women (Shannon’s index: p = 

0.06; observed OTUs: p = 0.07; Faith’s PD: p = 0.07).

PERMANOVA showed significant associations 

between beta diversity metrics and race and RT. 

Significant differences of vaginal microbiome metrics 

were found between pre- and post-RT in Bray–Curtis 

distance (p = 0.02), Jaccard distance (p = 0.04), and 

unweighted (p = 0.002) and weighted (p = 0.01) 

UniFrac distances. Race was significantly associated 

with the vaginal microbiome metrics in Bray–Curtis 

distance (p = 0.003), Jaccard distance (p = 0.003), 

and unweighted (p = 0.008) and weighted (p = 0.05) 

UniFrac distances. Based on Bray–Curtis distance and 

unweighted UniFrac distance matrices, PCoA showed 

dissimilarities of vaginal microbiome with respect 

to RT (pre and post) and race (African American, 

Caucasian, Asian, and Latina).
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FIGURE 3. Vaginal Microbiome at Phylum Level
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Abundance analysis: Among microbial taxa asso-

ciated with BV (Onderdonk, Delaney, & Fichorova, 

2016), ANCOM showed that women post-RT had 

higher abundances of the taxa Mobiluncus, Atopobium, 

and Prevotella, but lower abundances of Lactobacillus, 

Gardnerella, and Peptostreptococcus than pre-RT (see 

Table 1). The only differential taxa abundance related 

to race was Brucellaceae at the family level.

Discussion

This study demonstrates the fundamental methods 

for vaginal microbiome analysis using QIIME 2. The 

findings indicated that RT and race were associated 

with diversity of the vaginal microbiome. Women 

post-RT showed higher abundances of pathogenic 

microbes associated with BV. This pilot work provides 

first-hand evidence regarding the effect of RT on the 

vaginal microbiome and supports the need for ongo-

ing study to further understand the determinants 

and consequences of dysbiotic vaginal microbiome in 

women with gynecologic cancer.

Using 16S rRNA and QIIME 2 to analyze vaginal 

microbiome data in women with gynecologic cancer 

is feasible based on standard protocols (Human 

Microbiome Project Consortium, 2012). The study 

team found QIIME 2 useful for microbiome analysis. 

The team installed it on several computational plat-

forms, such as a native Linux server, Amazon Web 

Services, VirtualBox on Windows, and MacOS oper-

ating system. As a no-cost bioinformatics pipeline, 

QIIME 2 has multiple strengths, including straight-

forward installation process, automatic assignment 

of provenance (capturing actions and details associ-

ated with each step of data analysis) to increase the 

rigor and reproducibility of microbiome data analysis, 

sharing findings with and without QIIME 2 installa-

tion, and online data visualization. Therefore, QIIME 

2 can be easily adapted to analyze any type of microbi-

ome data in nursing science.

Quality assurance is essential for human microbi-

ome studies (Goodrich et al., 2014). Variations from 

microbiome sample collection, storage, and analy-

sis can lead to bias in study findings (Sinha, Abnet, 

White, Knight, & Huttenhower, 2015; Sinha et al., 

2017). In this model of vaginal microbiome analysis 

using QIIME 2, several actions were taken to ensure 

the quality of the analysis. Team members of the 

microbiome analysis group have attended a QIIME 2  

workshop hosted by the QIIME 2 team. In addi-

tion, all the steps using QIIME 2 in this study were 

tested based on a QIIME 2 tutorial, with support of 

the QIIME 2 development team. The team members 

have independently analyzed the same vaginal micro-

biome data attached with the metadata using the 

same QIIME 2 and trained classifier. Comparisons of 

final results among group members showed identi-

cal results, supporting the validity and robustness of 

QIIME 2 for the vaginal microbiome analysis.

Based on the multiple-factors framework (Bai et 

al., 2017; Chase et al., 2015), a variety of factors, such as 

demographics and cancer treatment, can significantly 

contribute to dysbiosis of the vaginal microbiome. 

RT has long been used as a curative or palliative 

therapy in gynecologic cancer and can potentially dis-

turb compositions of the vaginal microbiome (Muls 

et al., 2017). This pilot study showed depletion of 

Lactobacillus pre- and post-RT. Lactobacillus is thought 

to be the dominant genus in the vaginal microbiome 

of premenopausal (Gajer et al., 2012; Ravel et al., 2011) 

and postmenopausal women (Hummelen et al., 2011). 

TABLE 1. Differential Abundance of Genera Associated With Bacterial Vaginosis Between Pre-RT and Post-RT by ANCOM

Taxon

Percentile Pre-RT Percentile Post-RT

0 25 50 75 100 0 25 50 75 100

Atopobium 1 1 12 964 5,145 1 1 39 458 169,065

Gardnerella 1 1 428 11,196 140,624 1 1 106 4,479 88,986

Lactobacillus 1 710 2,392 48,500 226,111 1 36 134 16,131 248,490

Mobiluncus 1 1 1 73 258 1 1 13 244 5,116

Peptostreptococcus 1 1 17 676 6,624 1 1 1 203 7,790

Prevotella 1 1 19 222 5,415 1 1 44 609 60,478

ANCOM—analysis of composition of microbiome; RT—radiation therapy
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Anaerobic metabolism of glycogen by vaginal epithe-

lial cells and vaginal microbes, such as Lactobacillus, 

produce low vaginal pH. The resulting acidic envi-

ronment can protect against pathogenic microbes 

of the genitourinary tract (Boskey, Cone, Whaley, 

& Moench, 2001). In the absence of Lactobacillus, 

pathogenic microbes associated with BV were often 

predominant (Fredricks, 2011). As is seen in women 

with symptomatic BV, when Lactobacillus was at low 

abundance, a diverse group of pathogenic bacteria 

were seen in its place (Muhleisen & Herbst-Kralovetz, 

2016; Onderdonk et al., 2016). The current findings 

in women with gynecologic cancer seem to show 

vaginal microbiome compositions consistent with 

the literature among women with symptomatic BV 

(Muhleisen & Herbst-Kralovetz, 2016; Onderdonk et 

al., 2016), showing low abundance of Lactobacillus but 

higher abundances of BV-associated pathogens, such 

as Atopobium and Prevotella. These findings suggest 

a higher risk of BV among women with gynecologic 

cancer post-RT.

This study showed an increase in vaginal micro-

biome diversity from pre- to post-RT; as reported 

previously, the increased diversity was associated 

with pathogenic microbes, such as Atopobium and 

Prevotella. From this small sample size, the find-

ings showed differences in the vaginal microbiome 

diversity related to race, which aligned with pre-

vious findings in healthy women (Fettweis et al., 

2014). Further research is needed to understand the 

potential role of the vaginal microbiome in treat-

ment outcomes, particularly in the poorer outcomes 

documented in African American women treated for 

gynecologic cancer (Cote, Ruterbusch, Olson, Lu, & 

Ali-Fehmi, 2015). Collectively, the findings seemed to 

support the effect of RT on the vaginal microbiome, 

which may potentially lead to poor treatment-related 

outcomes.

Limitations

This study suggested that women with gynecologic 

cancer have, relative to reports in the literature 

(Hummelen et al., 2011), abnormal vaginal microbi-

ome profiles pre- and post-RT. These findings should 

be further tested in a large and diverse sample of 

women with gynecologic cancer compared to a sim-

ilarly diverse group of healthy women. A healthy 

control group can help mitigate the effect of meno-

pausal status and other confounders, such as race, 

sexual behaviors, use of antibiotics, prebiotics, probi-

otics, and intravaginal products. In addition, as one 

of the first studies to report the vaginal microbiome 

in patients with gynecologic cancer pre- and post-RT, 

the current analysis focused on genus level of 

Lactobacillus rather than species level, which may 

preclude further interpretation of the relationships 

between specific species of the vaginal microbiome 

(e.g., Lactobacillus crispatus, Lactobacillus jensenii, 

Lactobacillus iners) and treatment-related outcomes, 

such as BV. Despite these limitations, this study intro-

duced new knowledge regarding human microbiome 

data collection and analysis, which will help inform 

clinical nurses about future directions in cancer care. 

Implications for Nursing

This study reported the methods for vaginal micro-

biome analysis, including 16S rRNA sequencing and 

the QIIME 2 pipeline. The methods presented in 

the current article can be generalized to study other 

microbiome data of interest, such as gut, oral, and 

skin microbiomes. As a new field in cancer, this study 

provides a promising opportunity for nursing scien-

tists to understand the biologic characteristics of the 

vaginal microbiome on cancer diagnosis, treatment, 

and prevention. Identification of specific microbial 

communities may lead to precise therapies, such as 

prebiotics and probiotics, which may play a role in 

preventing gynecologic cancer or ameliorating gyne-

cologic cancer treatment–related toxicities (e.g., 

vaginitis, vaginal fibrosis, sexual dysfunction) (Bahng, 

Dagan, Bruner, & Lin, 2012; Bruner et al., 1993).

Microbiome-related work has moved into 

clinical settings. 16S rRNA sequencing and micro-

biome analysis have been used to identify resistant 

microbial pathogens, reducing the prevalence of  

hospital-acquired infections (Ames et al., 2017). 

The vaginal microbiome seems to play crucial 

roles in high-grade cervical dysplasia and cervical car-

cinoma (Kyrgiou, Mitra, & Moscicki, 2017; Piyathilake 

et al., 2016). Knowledge regarding the vaginal micro-

biome communities can help detect and monitor 

gynecologic cancer occurrence and progression. The 

KNOWLEDGE TRANSLATION

 ɐ Analyzing vaginal microbiome data among women with gyneco-

logic cancer using QIIME 2™ is feasible.

 ɐ Women with gynecologic cancer showed depletion of Lactobacillus 

before and after radiation therapy.  

 ɐ Women with gynecologic cancer post–radiation therapy showed 

higher abundances of Mobiluncus, Atopobium, and Prevotella 

but lower abundances of Lactobacillus, Peptostreptococcus, and 

Gardnerella than those pre–radiation therapy.
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complex role of the human microbiome in cancer care 

is beginning to be understood. Direct clinical appli-

cations of the human microbiome are still limited. 

Understanding the promising clinical implications 

of the human microbiome and bioinformatics tech-

niques associated with the human microbiome are of 

particular relevance to nurse scientists and clinical 

practitioners, who are uniquely positioned to study 

and use these techniques in clinical settings.

Conclusion

This study introduced the use of 16S rRNA sequenc-

ing and QIIME 2 to analyze vaginal microbiome data 

among women with gynecologic cancer and suggested 

that QIIME 2 is a robust and valid tool to inform nurse 

scientists in human microbiome analysis. Pilot find-

ings showed that RT may lead to a higher diversity of 

vaginal microbiome and a higher abundance of patho-

genic microbiotas associated with BV. Future studies 

are needed to understand the effect of the vaginal 

microbiome on cancer treatment–related toxicities 

and outcomes and to develop precise interventions to 

promote a healthy microbiome.
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